Pseudorandomness in Central Force Optimization
Abstract: Central Force Optimization is a deterministic metaheuristic for an evolutionary algorithm that searches a decision space by flying probes whose trajectories are computed using a gravitational metaphor. CFO benefits substantially from the inclusion of a pseudorandom component (a numerical sequence that is precisely known by specification or calculation but otherwise arbitrary). The essential requirement is that the sequence is uncorrelated with the decision space topology, so that its effect is to pseudorandomly distribute probes throughout the landscape. While this process may appear to be similar to the randomness in an inherently stochastic algorithm, it is in fact fundamentally different because CFO remains deterministic at every step. Three pseudorandom methods are discussed (initial probe distribution, repositioning factor, and decision space adaptation). A sample problem is presented in detail and summary data included for a 23-function benchmark suite. CFO's performance is quite good compared to other highly developed, state-of-the-art algorithms. Includes corrections 02-03-2010.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.