Papers
Topics
Authors
Recent
Search
2000 character limit reached

Codes on graphs: Duality and MacWilliams identities

Published 29 Nov 2009 in cs.IT and math.IT | (0911.5508v4)

Abstract: A conceptual framework involving partition functions of normal factor graphs is introduced, paralleling a similar recent development by Al-Bashabsheh and Mao. The partition functions of dual normal factor graphs are shown to be a Fourier transform pair, whether or not the graphs have cycles. The original normal graph duality theorem follows as a corollary. Within this framework, MacWilliams identities are found for various local and global weight generating functions of general group or linear codes on graphs; this generalizes and provides a concise proof of the MacWilliams identity for linear time-invariant convolutional codes that was recently found by Gluesing-Luerssen and Schneider. Further MacWilliams identities are developed for terminated convolutional codes, particularly for tail-biting codes, similar to those studied recently by Bocharova, Hug, Johannesson and Kudryashov.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.