Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions (0911.1346v1)

Published 6 Nov 2009 in cs.MA and cs.DS

Abstract: Submodular functions are an important class of functions in combinatorial optimization which satisfy the natural properties of decreasing marginal costs. The study of these functions has led to strong structural properties with applications in many areas. Recently, there has been significant interest in extending the theory of algorithms for optimizing combinatorial problems (such as network design problem of spanning tree) over submodular functions. Unfortunately, the lower bounds under the general class of submodular functions are known to be very high for many of the classical problems. In this paper, we introduce and study an important subclass of submodular functions, which we call discounted price functions. These functions are succinctly representable and generalize linear cost functions. In this paper we study the following fundamental combinatorial optimization problems: Edge Cover, Spanning Tree, Perfect Matching and Shortest Path, and obtain tight upper and lower bounds for these problems. The main technical contribution of this paper is designing novel adaptive greedy algorithms for the above problems. These algorithms greedily build the solution whist rectifying mistakes made in the previous steps.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gagan Goel (15 papers)
  2. Pushkar Tripathi (8 papers)
  3. Lei Wang (977 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.