Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallelization of the LBG Vector Quantization Algorithm for Shared Memory Systems (0910.4711v1)

Published 26 Oct 2009 in cs.CV and cs.DC

Abstract: This paper proposes a parallel approach for the Vector Quantization (VQ) problem in image processing. VQ deals with codebook generation from the input training data set and replacement of any arbitrary data with the nearest codevector. Most of the efforts in VQ have been directed towards designing parallel search algorithms for the codebook, and little has hitherto been done in evolving a parallelized procedure to obtain an optimum codebook. This parallel algorithm addresses the problem of designing an optimum codebook using the traditional LBG type of vector quantization algorithm for shared memory systems and for the efficient usage of parallel processors. Using the codebook formed from a training set, any arbitrary input data is replaced with the nearest codevector from the codebook. The effectiveness of the proposed algorithm is indicated.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rajashekar Annaji (1 paper)
  2. Shrisha Rao (34 papers)
Citations (1)