Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Loops in a Shortest Homology Basis from Point Data (0909.5654v2)

Published 30 Sep 2009 in cs.CG and cs.DM

Abstract: Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper we present an algorithm to compute a set of loops from a point data that presumably sample a smooth manifold $M\subset \mathbb{R}d$. These loops approximate a {\em shortest} basis of the one dimensional homology group $H_1(M)$ over coefficients in finite field $\mathbb{Z}_2$. Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving our result, we also present a polynomial time algorithm for computing a shortest basis of $H_1(K)$ for any finite {\em simplicial complex} $K$ whose edges have non-negative weights.

Citations (54)

Summary

We haven't generated a summary for this paper yet.