Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Adiabatic Algorithms, Small Gaps, and Different Paths

Published 25 Sep 2009 in quant-ph and cs.CC | (0909.4766v2)

Abstract: We construct a set of instances of 3SAT which are not solved efficiently using the simplest quantum adiabatic algorithm. These instances are obtained by picking random clauses all consistent with two disparate planted solutions and then penalizing one of them with a single additional clause. We argue that by randomly modifying the beginning Hamiltonian, one obtains (with substantial probability) an adiabatic path that removes this difficulty. This suggests that the quantum adiabatic algorithm should in general be run on each instance with many different random paths leading to the problem Hamiltonian. We do not know whether this trick will help for a random instance of 3SAT (as opposed to an instance from the particular set we consider), especially if the instance has an exponential number of disparate assignments that violate few clauses. We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way to numerically investigate the ground state as well as the first excited state of our system. Our arguments are supplemented by Quantum Monte Carlo data from simulations with up to 150 spins.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.