Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic theory for the semiparametric accelerated failure time model with missing data (0908.3135v1)

Published 21 Aug 2009 in math.ST and stat.TH

Abstract: We consider a class of doubly weighted rank-based estimating methods for the transformation (or accelerated failure time) model with missing data as arise, for example, in case-cohort studies. The weights considered may not be predictable as required in a martingale stochastic process formulation. We treat the general problem as a semiparametric estimating equation problem and provide proofs of asymptotic properties for the weighted estimators, with either true weights or estimated weights, by using empirical process theory where martingale theory may fail. Simulations show that the outcome-dependent weighted method works well for finite samples in case-cohort studies and improves efficiency compared to methods based on predictable weights. Further, it is seen that the method is even more efficient when estimated weights are used, as is commonly the case in the missing data literature. The Gehan censored data Wilcoxon weights are found to be surprisingly efficient in a wide class of problems.

Citations (38)

Summary

We haven't generated a summary for this paper yet.