Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient IRIS Recognition through Improvement of Feature Extraction and subset Selection (0906.4789v1)

Published 25 Jun 2009 in cs.CV

Abstract: The selection of the optimal feature subset and the classification has become an important issue in the field of iris recognition. In this paper we propose several methods for iris feature subset selection and vector creation. The deterministic feature sequence is extracted from the iris image by using the contourlet transform technique. Contourlet transform captures the intrinsic geometrical structures of iris image. It decomposes the iris image into a set of directional sub-bands with texture details captured in different orientations at various scales so for reducing the feature vector dimensions we use the method for extract only significant bit and information from normalized iris images. In this method we ignore fragile bits. And finally we use SVM (Support Vector Machine) classifier for approximating the amount of people identification in our proposed system. Experimental result show that most proposed method reduces processing time and increase the classification accuracy and also the iris feature vector length is much smaller versus the other methods.

Citations (48)

Summary

We haven't generated a summary for this paper yet.