Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weight Optimization for Consensus Algorithms with Correlated Switching Topology (0906.3736v2)

Published 19 Jun 2009 in cs.IT and math.IT

Abstract: We design the weights in consensus algorithms with spatially correlated random topologies. These arise with: 1) networks with spatially correlated random link failures and 2) networks with randomized averaging protocols. We show that the weight optimization problem is convex for both symmetric and asymmetric random graphs. With symmetric random networks, we choose the consensus mean squared error (MSE) convergence rate as optimization criterion and explicitly express this rate as a function of the link formation probabilities, the link formation spatial correlations, and the consensus weights. We prove that the MSE convergence rate is a convex, nonsmooth function of the weights, enabling global optimization of the weights for arbitrary link formation probabilities and link correlation structures. We extend our results to the case of asymmetric random links. We adopt as optimization criterion the mean squared deviation (MSdev) of the nodes states from the current average state. We prove that MSdev is a convex function of the weights. Simulations show that significant performance gain is achieved with our weight design method when compared with methods available in the literature.

Citations (64)

Summary

We haven't generated a summary for this paper yet.