Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed elections in an Archimedean ring of processors

Published 27 May 2009 in cs.DC and cs.DS | (0906.0731v1)

Abstract: Unlimited asynchronism is intolerable in real physically distributed computer systems. Such systems, synchronous or not, use clocks and timeouts. Therefore the magnitudes of elapsed absolute time in the system need to satisfy the axiom of Archimedes. Under this restriction of asynchronicity logically time-independent solutions can be derived which are nonetheless better (in number of message passes) than is possible otherwise. The use of clocks by the individual processors, in elections in a ring of asynchronous processors without central control, allows a deterministic solution which requires but a linear number of message passes. To obtain the result it has to be assumed that the clocks measure finitely proportional absolute time-spans for their time units, that is, the magnitudes of elapsed time in the ring network satisfy the axiom of Archimedes. As a result, some basic subtilities associated with distributed computations are highlighted. For instance, the known nonlinear lower bound on the required number of message passes is cracked. For the synchronous case, in which the necessary assumptions hold a fortiori, the method is -asymptotically- the most efficient one yet, and of optimal order of magnitude. The deterministic algorithm is of -asymptotically- optimal bit complexity, and, in the synchronous case, also yields an optimal method to determine the ring size. All of these results improve the known ones.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.