Papers
Topics
Authors
Recent
2000 character limit reached

On Smoothed Analysis of Quicksort and Hoare's Find

Published 24 Apr 2009 in cs.DS | (0904.3898v2)

Abstract: We provide a smoothed analysis of Hoare's find algorithm and we revisit the smoothed analysis of quicksort. Hoare's find algorithm - often called quickselect - is an easy-to-implement algorithm for finding the k-th smallest element of a sequence. While the worst-case number of comparisons that Hoare's find needs is quadratic, the average-case number is linear. We analyze what happens between these two extremes by providing a smoothed analysis of the algorithm in terms of two different perturbation models: additive noise and partial permutations. Moreover, we provide lower bounds for the smoothed number of comparisons of quicksort and Hoare's find for the median-of-three pivot rule, which usually yields faster algorithms than always selecting the first element: The pivot is the median of the first, middle, and last element of the sequence. We show that median-of-three does not yield a significant improvement over the classic rule: the lower bounds for the classic rule carry over to median-of-three.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.