Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Smoothed Analysis of Quicksort and Hoare's Find (0904.3898v2)

Published 24 Apr 2009 in cs.DS

Abstract: We provide a smoothed analysis of Hoare's find algorithm and we revisit the smoothed analysis of quicksort. Hoare's find algorithm - often called quickselect - is an easy-to-implement algorithm for finding the k-th smallest element of a sequence. While the worst-case number of comparisons that Hoare's find needs is quadratic, the average-case number is linear. We analyze what happens between these two extremes by providing a smoothed analysis of the algorithm in terms of two different perturbation models: additive noise and partial permutations. Moreover, we provide lower bounds for the smoothed number of comparisons of quicksort and Hoare's find for the median-of-three pivot rule, which usually yields faster algorithms than always selecting the first element: The pivot is the median of the first, middle, and last element of the sequence. We show that median-of-three does not yield a significant improvement over the classic rule: the lower bounds for the classic rule carry over to median-of-three.

Citations (15)

Summary

We haven't generated a summary for this paper yet.