Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Power of Depth 2 Circuits over Algebras (0904.2058v1)

Published 14 Apr 2009 in cs.CC and cs.DS

Abstract: We study the problem of polynomial identity testing (PIT) for depth 2 arithmetic circuits over matrix algebra. We show that identity testing of depth 3 (Sigma-Pi-Sigma) arithmetic circuits over a field F is polynomial time equivalent to identity testing of depth 2 (Pi-Sigma) arithmetic circuits over U_2(F), the algebra of upper-triangular 2 x 2 matrices with entries from F. Such a connection is a bit surprising since we also show that, as computational models, Pi-Sigma circuits over U_2(F) are strictly `weaker' than Sigma-Pi-Sigma circuits over F. The equivalence further shows that PIT of depth 3 arithmetic circuits reduces to PIT of width-2 planar commutative Algebraic Branching Programs (ABP). Thus, identity testing for commutative ABPs is interesting even in the case of width-2. Further, we give a deterministic polynomial time identity testing algorithm for a Pi-Sigma circuit over any constant dimensional commutative algebra over F. While over commutative algebras of polynomial dimension, identity testing is at least as hard as that of Sigma-Pi-Sigma circuits over F.

Citations (21)

Summary

We haven't generated a summary for this paper yet.