Graph polynomials and approximation of partition functions with Loopy Belief Propagation
Abstract: The Bethe approximation, or loopy belief propagation algorithm is a successful method for approximating partition functions of probabilistic models associated with a graph. Chertkov and Chernyak derived an interesting formula called Loop Series Expansion, which is an expansion of the partition function. The main term of the series is the Bethe approximation while other terms are labeled by subgraphs called generalized loops. In our paper, we derive the loop series expansion in form of a polynomial with coefficients positive integers, and extend the result to the expansion of marginals. In this paper, we give more clear derivation for the results and discuss the properties of the polynomial which is introduced in the paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.