Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Use of Suffix Arrays for Memory-Efficient Lempel-Ziv Data Compression (0903.4251v1)

Published 25 Mar 2009 in cs.DS

Abstract: Much research has been devoted to optimizing algorithms of the Lempel-Ziv (LZ) 77 family, both in terms of speed and memory requirements. Binary search trees and suffix trees (ST) are data structures that have been often used for this purpose, as they allow fast searches at the expense of memory usage. In recent years, there has been interest on suffix arrays (SA), due to their simplicity and low memory requirements. One key issue is that an SA can solve the sub-string problem almost as efficiently as an ST, using less memory. This paper proposes two new SA-based algorithms for LZ encoding, which require no modifications on the decoder side. Experimental results on standard benchmarks show that our algorithms, though not faster, use 3 to 5 times less memory than the ST counterparts. Another important feature of our SA-based algorithms is that the amount of memory is independent of the text to search, thus the memory that has to be allocated can be defined a priori. These features of low and predictable memory requirements are of the utmost importance in several scenarios, such as embedded systems, where memory is at a premium and speed is not critical. Finally, we point out that the new algorithms are general, in the sense that they are adequate for applications other than LZ compression, such as text retrieval and forward/backward sub-string search.

Citations (8)

Summary

We haven't generated a summary for this paper yet.