Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fibonacci dimension of a graph (0903.2507v1)

Published 13 Mar 2009 in math.CO and cs.DS

Abstract: The Fibonacci dimension fdim(G) of a graph G is introduced as the smallest integer f such that G admits an isometric embedding into Gamma_f, the f-dimensional Fibonacci cube. We give bounds on the Fibonacci dimension of a graph in terms of the isometric and lattice dimension, provide a combinatorial characterization of the Fibonacci dimension using properties of an associated graph, and establish the Fibonacci dimension for certain families of graphs. From the algorithmic point of view we prove that it is NP-complete to decide if fdim(G) equals to the isometric dimension of G, and that it is also NP-hard to approximate fdim(G) within (741/740)-epsilon. We also give a (3/2)-approximation algorithm for fdim(G) in the general case and a (1+epsilon)-approximation algorithm for simplex graphs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.