Papers
Topics
Authors
Recent
2000 character limit reached

Compressive Sensing Using Low Density Frames

Published 3 Mar 2009 in cs.IT, math.IT, and stat.CO | (0903.0650v1)

Abstract: We consider the compressive sensing of a sparse or compressible signal ${\bf x} \in {\mathbb R}M$. We explicitly construct a class of measurement matrices, referred to as the low density frames, and develop decoding algorithms that produce an accurate estimate $\hat{\bf x}$ even in the presence of additive noise. Low density frames are sparse matrices and have small storage requirements. Our decoding algorithms for these frames have $O(M)$ complexity. Simulation results are provided, demonstrating that our approach significantly outperforms state-of-the-art recovery algorithms for numerous cases of interest. In particular, for Gaussian sparse signals and Gaussian noise, we are within 2 dB range of the theoretical lower bound in most cases.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.