Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Real Feasibility via Circuit Discriminants (0901.4400v2)

Published 28 Jan 2009 in math.AG, cs.CC, and math.OC

Abstract: We show that detecting real roots for honestly n-variate (n+2)-nomials (with integer exponents and coefficients) can be done in time polynomial in the sparse encoding for any fixed n. The best previous complexity bounds were exponential in the sparse encoding, even for n fixed. We then give a characterization of those functions k(n) such that the complexity of detecting real roots for n-variate (n+k(n))-nomials transitions from P to NP-hardness as n tends to infinity. Our proofs follow in large part from a new complexity threshold for deciding the vanishing of A-discriminants of n-variate (n+k(n))-nomials. Diophantine approximation, through linear forms in logarithms, also arises as a key tool.

Citations (35)

Summary

We haven't generated a summary for this paper yet.