Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Large Scale Network Utility Maximization (0901.2684v2)

Published 18 Jan 2009 in cs.IT, cs.DC, math.IT, and math.OC

Abstract: Recent work by Zymnis et al. proposes an efficient primal-dual interior-point method, using a truncated Newton method, for solving the network utility maximization (NUM) problem. This method has shown superior performance relative to the traditional dual-decomposition approach. Other recent work by Bickson et al. shows how to compute efficiently and distributively the Newton step, which is the main computational bottleneck of the Newton method, utilizing the Gaussian belief propagation algorithm. In the current work, we combine both approaches to create an efficient distributed algorithm for solving the NUM problem. Unlike the work of Zymnis, which uses a centralized approach, our new algorithm is easily distributed. Using an empirical evaluation we show that our new method outperforms previous approaches, including the truncated Newton method and dual-decomposition methods. As an additional contribution, this is the first work that evaluates the performance of the Gaussian belief propagation algorithm vs. the preconditioned conjugate gradient method, for a large scale problem.

Citations (46)

Summary

We haven't generated a summary for this paper yet.