Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bit Precision Analysis for Compressed Sensing (0901.2147v1)

Published 15 Jan 2009 in cs.IT and math.IT

Abstract: This paper studies the stability of some reconstruction algorithms for compressed sensing in terms of the bit precision. Considering the fact that practical digital systems deal with discretized signals, we motivate the importance of the total number of accurate bits needed from the measurement outcomes in addition to the number of measurements. It is shown that if one uses a $2k \times n$ Vandermonde matrix with roots on the unit circle as the measurement matrix, $O(\ell + k \log(n/k))$ bits of precision per measurement are sufficient to reconstruct a $k$-sparse signal $x \in \Rn$ with dynamic range (i.e., the absolute ratio between the largest and the smallest nonzero coefficients) at most $2\ell$ within $\ell$ bits of precision, hence identifying its correct support. Finally, we obtain an upper bound on the total number of required bits when the measurement matrix satisfies a restricted isometry property, which is in particular the case for random Fourier and Gaussian matrices. For very sparse signals, the upper bound on the number of required bits for Vandermonde matrices is shown to be better than this general upper bound.

Citations (14)

Summary

We haven't generated a summary for this paper yet.