Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalized Carpenter's Rule Theorem for Self-Touching Linkages (0901.1322v1)

Published 9 Jan 2009 in cs.CG and cs.FL

Abstract: The Carpenter's Rule Theorem states that any chain linkage in the plane can be folded continuously between any two configurations while preserving the bar lengths and without the bars crossing. However, this theorem applies only to strictly simple configurations, where bars intersect only at their common endpoints. We generalize the theorem to self-touching configurations, where bars can touch but not properly cross. At the heart of our proof is a new definition of self-touching configurations of planar linkages, based on an annotated configuration space and limits of nontouching configurations. We show that this definition is equivalent to the previously proposed definition of self-touching configurations, which is based on a combinatorial description of overlapping features. Using our new definition, we prove the generalized Carpenter's Rule Theorem using a topological argument. We believe that our topological methodology provides a powerful tool for manipulating many kinds of self-touching objects, such as 3D hinged assemblies of polygons and rigid origami. In particular, we show how to apply our methodology to extend to self-touching configurations universal reconfigurability results for open chains with slender polygonal adornments, and single-vertex rigid origami with convex cones.

Citations (10)

Summary

We haven't generated a summary for this paper yet.