Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Step Forward in Studying the Compact Genetic Algorithm (0901.0598v1)

Published 6 Jan 2009 in cs.NE and cs.AI

Abstract: The compact Genetic Algorithm (cGA) is an Estimation of Distribution Algorithm that generates offspring population according to the estimated probabilistic model of the parent population instead of using traditional recombination and mutation operators. The cGA only needs a small amount of memory; therefore, it may be quite useful in memory-constrained applications. This paper introduces a theoretical framework for studying the cGA from the convergence point of view in which, we model the cGA by a Markov process and approximate its behavior using an Ordinary Differential Equation (ODE). Then, we prove that the corresponding ODE converges to local optima and stays there. Consequently, we conclude that the cGA will converge to the local optima of the function to be optimized.

Citations (39)

Summary

We haven't generated a summary for this paper yet.