Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polar Codes: Characterization of Exponent, Bounds, and Constructions (0901.0536v2)

Published 5 Jan 2009 in cs.IT and math.IT

Abstract: Polar codes were recently introduced by Ar\i kan. They achieve the capacity of arbitrary symmetric binary-input discrete memoryless channels under a low complexity successive cancellation decoding strategy. The original polar code construction is closely related to the recursive construction of Reed-Muller codes and is based on the $2 \times 2$ matrix $\bigl[ 1 &0 1& 1 \bigr]$. It was shown by Ar\i kan and Telatar that this construction achieves an error exponent of $\frac12$, i.e., that for sufficiently large blocklengths the error probability decays exponentially in the square root of the length. It was already mentioned by Ar\i kan that in principle larger matrices can be used to construct polar codes. A fundamental question then is to see whether there exist matrices with exponent exceeding $\frac12$. We first show that any $\ell \times \ell$ matrix none of whose column permutations is upper triangular polarizes symmetric channels. We then characterize the exponent of a given square matrix and derive upper and lower bounds on achievable exponents. Using these bounds we show that there are no matrices of size less than 15 with exponents exceeding $\frac12$. Further, we give a general construction based on BCH codes which for large $n$ achieves exponents arbitrarily close to 1 and which exceeds $\frac12$ for size 16.

Citations (113)

Summary

We haven't generated a summary for this paper yet.