Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the least hypervolume contributor: NP-hard in general, but fast in practice (0812.2636v2)

Published 14 Dec 2008 in cs.DS and cs.CC

Abstract: The hypervolume indicator is an increasingly popular set measure to compare the quality of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization algorithms is the calculation of the hypervolume contribution of single solutions regarding a Pareto set. We show that exact calculation of the hypervolume contribution is #P-hard while its approximation is NP-hard. The same holds for the calculation of the minimal contribution. We also prove that it is NP-hard to decide whether a solution has the least hypervolume contribution. Even deciding whether the contribution of a solution is at most $(1+\eps)$ times the minimal contribution is NP-hard. This implies that it is neither possible to efficiently find the least contributing solution (unless $P = NP$) nor to approximate it (unless $NP = BPP$). Nevertheless, in the second part of the paper we present a fast approximation algorithm for this problem. We prove that for arbitrarily given $\eps,\delta>0$ it calculates a solution with contribution at most $(1+\eps)$ times the minimal contribution with probability at least $(1-\delta)$. Though it cannot run in polynomial time for all instances, it performs extremely fast on various benchmark datasets. The algorithm solves very large problem instances which are intractable for exact algorithms (e.g., 10000 solutions in 100 dimensions) within a few seconds.

Citations (140)

Summary

We haven't generated a summary for this paper yet.