Papers
Topics
Authors
Recent
2000 character limit reached

Van der Waerden's Theorem and Avoidability in Words

Published 12 Dec 2008 in math.CO and cs.FL | (0812.2466v5)

Abstract: Pirillo and Varricchio, and independently, Halbeisen and Hungerbuhler considered the following problem, open since 1994: Does there exist an infinite word w over a finite subset of Z such that w contains no two consecutive blocks of the same length and sum? We consider some variations on this problem in the light of van der Waerden's theorem on arithmetic progressions.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.