Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Sparse Matrix Factorizations (0812.1869v1)

Published 10 Dec 2008 in cs.LG

Abstract: We present a convex formulation of dictionary learning for sparse signal decomposition. Convexity is obtained by replacing the usual explicit upper bound on the dictionary size by a convex rank-reducing term similar to the trace norm. In particular, our formulation introduces an explicit trade-off between size and sparsity of the decomposition of rectangular matrices. Using a large set of synthetic examples, we compare the estimation abilities of the convex and non-convex approaches, showing that while the convex formulation has a single local minimum, this may lead in some cases to performance which is inferior to the local minima of the non-convex formulation.

Citations (142)

Summary

We haven't generated a summary for this paper yet.