Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decision trees are PAC-learnable from most product distributions: a smoothed analysis

Published 4 Dec 2008 in cs.LG and cs.CC | (0812.0933v1)

Abstract: We consider the problem of PAC-learning decision trees, i.e., learning a decision tree over the n-dimensional hypercube from independent random labeled examples. Despite significant effort, no polynomial-time algorithm is known for learning polynomial-sized decision trees (even trees of any super-constant size), even when examples are assumed to be drawn from the uniform distribution on {0,1}n. We give an algorithm that learns arbitrary polynomial-sized decision trees for {\em most product distributions}. In particular, consider a random product distribution where the bias of each bit is chosen independently and uniformly from, say, [.49,.51]. Then with high probability over the parameters of the product distribution and the random examples drawn from it, the algorithm will learn any tree. More generally, in the spirit of smoothed analysis, we consider an arbitrary product distribution whose parameters are specified only up to a [-c,c] accuracy (perturbation), for an arbitrarily small positive constant c.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.