Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Matroid Isomorphism Problem (0811.3859v1)

Published 24 Nov 2008 in cs.CC

Abstract: We study the complexity of testing if two given matroids are isomorphic. The problem is easily seen to be in $\Sigma_2p$. In the case of linear matroids, which are represented over polynomially growing fields, we note that the problem is unlikely to be $\Sigma_2p$-complete and is $\co\NP$-hard. We show that when the rank of the matroid is bounded by a constant, linear matroid isomorphism, and matroid isomorphism are both polynomial time many-one equivalent to graph isomorphism. We give a polynomial time Turing reduction from graphic matroid isomorphism problem to the graph isomorphism problem. Using this, we are able to show that graphic matroid isomorphism testing for planar graphs can be done in deterministic polynomial time. We then give a polynomial time many-one reduction from bounded rank matroid isomorphism problem to graphic matroid isomorphism, thus showing that all the above problems are polynomial time equivalent. Further, for linear and graphic matroids, we prove that the automorphism problem is polynomial time equivalent to the corresponding isomorphism problems. In addition, we give a polynomial time membership test algorithm for the automorphism group of a graphic matroid.

Citations (7)

Summary

We haven't generated a summary for this paper yet.