Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entropy, Perception, and Relativity

Published 2 Nov 2008 in cs.LG | (0811.0139v1)

Abstract: In this paper, I expand Shannon's definition of entropy into a new form of entropy that allows integration of information from different random events. Shannon's notion of entropy is a special case of my more general definition of entropy. I define probability using a so-called performance function, which is de facto an exponential distribution. Assuming that my general notion of entropy reflects the true uncertainty about a probabilistic event, I understand that our perceived uncertainty differs. I claim that our perception is the result of two opposing forces similar to the two famous antagonists in Chinese philosophy: Yin and Yang. Based on this idea, I show that our perceived uncertainty matches the true uncertainty in points determined by the golden ratio. I demonstrate that the well-known sigmoid function, which we typically employ in artificial neural networks as a non-linear threshold function, describes the actual performance. Furthermore, I provide a motivation for the time dilation in Einstein's Special Relativity, basically claiming that although time dilation conforms with our perception, it does not correspond to reality. At the end of the paper, I show how to apply this theoretical framework to practical applications. I present recognition rates for a pattern recognition problem, and also propose a network architecture that can take advantage of general entropy to solve complex decision problems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.