Interpolation of Shifted-Lacunary Polynomials
Abstract: Given a "black box" function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t, the shift s (a rational), the exponents 0 <= e1 < e2 < ... < et, and the coefficients c1,...,ct in Q{0} such that f(x) = c1(x-s)e1+c2(x-s)e2+...+ct(x-s)et. The computed sparsity t is absolutely minimal over any shifted power basis. The novelty of our algorithm is that the complexity is polynomial in the (sparse) representation size, and in particular is logarithmic in deg(f). Our method combines previous celebrated results on sparse interpolation and computing sparsest shifts, and provides a way to handle polynomials with extremely high degree which are, in some sense, sparse in information.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.