Duality between quasi-concave functions and monotone linkage functions
Abstract: A function $F$ defined on all subsets of a finite ground set $E$ is quasi-concave if $F(X\cup Y)\geq\min{F(X),F(Y)}$ for all $X,Y\subset E$. Quasi-concave functions arise in many fields of mathematics and computer science such as social choice, theory of graph, data mining, clustering and other fields. The maximization of quasi-concave function takes, in general, exponential time. However, if a quasi-concave function is defined by associated monotone linkage function then it can be optimized by the greedy type algorithm in a polynomial time. Quasi-concave functions defined as minimum values of monotone linkage functions were considered on antimatroids, where the correspondence between quasi-concave and bottleneck functions was shown (Kempner & Levit, 2003). The goal of this paper is to analyze quasi-concave functions on different families of sets and to investigate their relationships with monotone linkage functions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.