Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing human and automatic thesaurus mapping approaches in the agricultural domain (0808.2246v1)

Published 16 Aug 2008 in cs.DL

Abstract: Knowledge organization systems (KOS), like thesauri and other controlled vocabularies, are used to provide subject access to information systems across the web. Due to the heterogeneity of these systems, mapping between vocabularies becomes crucial for retrieving relevant information. However, mapping thesauri is a laborious task, and thus big efforts are being made to automate the mapping process. This paper examines two mapping approaches involving the agricultural thesaurus AGROVOC, one machine-created and one human created. We are addressing the basic question "What are the pros and cons of human and automatic mapping and how can they complement each other?" By pointing out the difficulties in specific cases or groups of cases and grouping the sample into simple and difficult types of mappings, we show the limitations of current automatic methods and come up with some basic recommendations on what approach to use when.

Citations (41)

Summary

We haven't generated a summary for this paper yet.