Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Complexity of Minimum Leaf Out-branching Problem (0808.0980v1)

Published 7 Aug 2008 in cs.DS and cs.CC

Abstract: Given a digraph $D$, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in $D$ an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. Gutin, Razgon and Kim (2008) proved that MinLOB is polynomial time solvable for acyclic digraphs which are exactly the digraphs of directed path-width (DAG-width, directed tree-width, respectively) 0. We investigate how much one can extend this polynomiality result. We prove that already for digraphs of directed path-width (directed tree-width, DAG-width, respectively) 1, MinLOB is NP-hard. On the other hand, we show that for digraphs of restricted directed tree-width (directed path-width, DAG-width, respectively) and a fixed integer $k$, the problem of checking whether there is an out-branching with at most $k$ leaves is polynomial time solvable.

Citations (19)

Summary

We haven't generated a summary for this paper yet.