Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mathematical Structure of Quantum Decision Theory (0808.0112v3)

Published 1 Aug 2008 in cs.AI, math-ph, math.MP, and quant-ph

Abstract: One of the most complex systems is the human brain whose formalized functioning is characterized by decision theory. We present a "Quantum Decision Theory" of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intentions, which allows us to explain a variety of interesting fallacies and anomalies that have been reported to particularize the decision making of real human beings. The theory describes entangled decision making, non-commutativity of subsequent decisions, and intention interference of composite prospects. We demonstrate how the violation of the Savage's sure-thing principle (disjunction effect) can be explained as a result of the interference of intentions, when making decisions under uncertainty. The conjunction fallacy is also explained by the presence of the interference terms. We demonstrate that all known anomalies and paradoxes, documented in the context of classical decision theory, are reducible to just a few mathematical archetypes, all of which finding straightforward explanations in the frame of the developed quantum approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. V. I. Yukalov (144 papers)
  2. D. Sornette (47 papers)
Citations (84)

Summary

We haven't generated a summary for this paper yet.