Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mathematical Structure of Quantum Decision Theory

Published 1 Aug 2008 in cs.AI, math-ph, math.MP, and quant-ph | (0808.0112v3)

Abstract: One of the most complex systems is the human brain whose formalized functioning is characterized by decision theory. We present a "Quantum Decision Theory" of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intentions, which allows us to explain a variety of interesting fallacies and anomalies that have been reported to particularize the decision making of real human beings. The theory describes entangled decision making, non-commutativity of subsequent decisions, and intention interference of composite prospects. We demonstrate how the violation of the Savage's sure-thing principle (disjunction effect) can be explained as a result of the interference of intentions, when making decisions under uncertainty. The conjunction fallacy is also explained by the presence of the interference terms. We demonstrate that all known anomalies and paradoxes, documented in the context of classical decision theory, are reducible to just a few mathematical archetypes, all of which finding straightforward explanations in the frame of the developed quantum approach.

Citations (84)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.