Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lectures on Probability, Entropy, and Statistical Physics (0808.0012v1)

Published 31 Jul 2008 in physics.data-an, cond-mat.stat-mech, cs.IT, math.IT, math.ST, physics.gen-ph, and stat.TH

Abstract: These lectures deal with the problem of inductive inference, that is, the problem of reasoning under conditions of incomplete information. Is there a general method for handling uncertainty? Or, at least, are there rules that could in principle be followed by an ideally rational mind when discussing scientific matters? What makes one statement more plausible than another? How much more plausible? And then, when new information is acquired how do we change our minds? Or, to put it differently, are there rules for learning? Are there rules for processing information that are objective and consistent? Are they unique? And, come to think of it, what, after all, is information? It is clear that data contains or conveys information, but what does this precisely mean? Can information be conveyed in other ways? Is information physical? Can we measure amounts of information? Do we need to? Our goal is to develop the main tools for inductive inference--probability and entropy--from a thoroughly Bayesian point of view and to illustrate their use in physics with examples borrowed from the foundations of classical statistical physics.

Citations (68)

Summary

We haven't generated a summary for this paper yet.