Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1 (0807.4753v1)

Published 30 Jul 2008 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p-norms. Equivalently, for all p >1, the minimum output Renyi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Renyi entropy of order p for a product channel need not be significantly greater than the minimum output entropy of its individual factors. Since p=1 corresponds to the von Neumann entropy, these counterexamples demonstrate that if the additivity conjecture of quantum information theory is true, it cannot be proved as a consequence of any channel-independent guarantee of maximal p-norm multiplicativity. We also show that a class of channels previously studied in the context of approximate encryption lead to counterexamples for all p > 2.

Citations (145)

Summary

We haven't generated a summary for this paper yet.