Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of Design-Based Functional Principal Components Analysis (0807.0169v2)

Published 1 Jul 2008 in math.ST and stat.TH

Abstract: This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and consistent. Under mild assumptions, asymptotic variances are derived for the FPCA' estimators and consistent estimators of them are proposed. Our approach is illustrated with a simulation study and we check the good properties of the proposed estimators of the eigenelements as well as their variance estimators obtained with the linearization approach.

Citations (46)

Summary

We haven't generated a summary for this paper yet.