Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs (0806.4735v1)

Published 29 Jun 2008 in cs.DS and cs.DM

Abstract: There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a $k{O(dk)} n$ time algorithm for finding a dominating set of size at most $k$ in a $d$-degenerated graph with $n$ vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain $K_h$ as a topological minor, we give an improved algorithm for the problem with running time $(O(h)){hk} n$. For graphs which are $K_h$-minor-free, the running time is further reduced to $(O(\log h)){hk/2} n$. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed $H$ and $k$, we show that if an $H$-minor-free graph $G$ with $n$ vertices contains an induced cycle of size $k$, then such a cycle can be found in O(n) expected time as well as in $O(n \log n)$ worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs.

Citations (109)

Summary

We haven't generated a summary for this paper yet.