Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the d-dimensional Quasi-Equally Spaced Sampling (0806.3681v1)

Published 23 Jun 2008 in cs.IT and math.IT

Abstract: We study a class of random matrices that appear in several communication and signal processing applications, and whose asymptotic eigenvalue distribution is closely related to the reconstruction error of an irregularly sampled bandlimited signal. We focus on the case where the random variables characterizing these matrices are d-dimensional vectors, independent, and quasi-equally spaced, i.e., they have an arbitrary distribution and their averages are vertices of a d-dimensional grid. Although a closed form expression of the eigenvalue distribution is still unknown, under these conditions we are able (i) to derive the distribution moments as the matrix size grows to infinity, while its aspect ratio is kept constant, and (ii) to show that the eigenvalue distribution tends to the Marcenko-Pastur law as d->infinity. These results can find application in several fields, as an example we show how they can be used for the estimation of the mean square error provided by linear reconstruction techniques.

Summary

We haven't generated a summary for this paper yet.