Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Certain Large Random Hermitian Jacobi Matrices with Applications to Wireless Communications (0806.2674v1)

Published 16 Jun 2008 in cs.IT and math.IT

Abstract: In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed form expression for the per-cell sum-rate of this channel in high-SNR, when an intra-cell TDMA protocol is employed. Since the matrices of interest are tridiagonal, their eigenvectors can be considered as sequences with second order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two by two matrices. For the case where $K$ users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.

Citations (18)

Summary

We haven't generated a summary for this paper yet.