Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marketing in Random Networks (0805.3155v4)

Published 21 May 2008 in cs.GT

Abstract: Viral marketing takes advantage of preexisting social networks among customers to achieve large changes in behaviour. Models of influence spread have been studied in a number of domains, including the effect of "word of mouth" in the promotion of new products or the diffusion of technologies. A social network can be represented by a graph where the nodes are individuals and the edges indicate a form of social relationship. The flow of influence through this network can be thought of as an increasing process of active nodes: as individuals become aware of new technologies, they have the potential to pass them on to their neighbours. The goal of marketing is to trigger a large cascade of adoptions. In this paper, we develop a mathematical model that allows to analyze the dynamics of the cascading sequence of nodes switching to the new technology. To this end we describe a continuous-time and a discrete-time models and analyse the proportion of nodes that adopt the new technology over time.

Citations (27)

Summary

We haven't generated a summary for this paper yet.