Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sponsored Search Auctions with Markovian Users (0805.0766v1)

Published 6 May 2008 in cs.GT

Abstract: Sponsored search involves running an auction among advertisers who bid in order to have their ad shown next to search results for specific keywords. Currently, the most popular auction for sponsored search is the "Generalized Second Price" (GSP) auction in which advertisers are assigned to slots in the decreasing order of their "score," which is defined as the product of their bid and click-through rate. In the past few years, there has been significant research on the game-theoretic issues that arise in an advertiser's interaction with the mechanism as well as possible redesigns of the mechanism, but this ranking order has remained standard. From a search engine's perspective, the fundamental question is: what is the best assignment of advertisers to slots? Here "best" could mean "maximizing user satisfaction," "most efficient," "revenue-maximizing," "simplest to interact with," or a combination of these. To answer this question we need to understand the behavior of a search engine user when she sees the displayed ads, since that defines the commodity the advertisers are bidding on, and its value. Most prior work has assumed that the probability of a user clicking on an ad is independent of the other ads shown on the page. We propose a simple Markovian user model that does not make this assumption. We then present an algorithm to determine the most efficient assignment under this model, which turns out to be different than that of GSP. A truthful auction then follows from an application of the Vickrey-Clarke-Groves (VCG) mechanism. Further, we show that our assignment has many of the desirable properties of GSP that makes bidding intuitive. At the technical core of our result are a number of insights about the structure of the optimal assignment.

Citations (152)

Summary

We haven't generated a summary for this paper yet.