Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The communication complexity of non-signaling distributions (0804.4859v5)

Published 30 Apr 2008 in quant-ph and cs.CC

Abstract: We study a model of communication complexity that encompasses many well-studied problems, including classical and quantum communication complexity, the complexity of simulating distributions arising from bipartite measurements of shared quantum states, and XOR games. In this model, Alice gets an input x, Bob gets an input y, and their goal is to each produce an output a,b distributed according to some pre-specified joint distribution p(a,b|x,y). We introduce a new technique based on affine combinations of lower-complexity distributions. Specifically, we introduce two complexity measures, one which gives lower bounds on classical communication, and one for quantum communication. These measures can be expressed as convex optimization problems. We show that the dual formulations have a striking interpretation, since they coincide with maximum violations of Bell and Tsirelson inequalities. The dual expressions are closely related to the winning probability of XOR games. These lower bounds subsume many known communication complexity lower bound methods, most notably the recent lower bounds of Linial and Shraibman for the special case of Boolean functions. We show that the gap between the quantum and classical lower bounds is at most linear in the size of the support of the distribution, and does not depend on the size of the inputs. This translates into a bound on the gap between maximal Bell and Tsirelson inequality violations, which was previously known only for the case of distributions with Boolean outcomes and uniform marginals. Finally, we give an exponential upper bound on quantum and classical communication complexity in the simultaneous messages model, for any non-signaling distribution. One consequence is a simple proof that any quantum distribution can be approximated with a constant number of bits of communication.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Julien Degorre (2 papers)
  2. Marc Kaplan (19 papers)
  3. Sophie Laplante (8 papers)
  4. Jérémie Roland (24 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.