Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matchgates and classical simulation of quantum circuits (0804.4050v2)

Published 25 Apr 2008 in quant-ph

Abstract: Let G(A,B) denote the 2-qubit gate which acts as the 1-qubit SU(2) gates A and B in the even and odd parity subspaces respectively, of two qubits. Using a Clifford algebra formalism we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allowing the same gates to act only on n.n. and next-n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan-Wigner representation of a Clifford algebra, we show how one may generalise the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com