The shortest game of Chinese Checkers and related problems
Abstract: In 1979, David Fabian found a complete game of two-person Chinese Checkers in 30 moves (15 by each player) [Martin Gardner, Penrose Tiles to Trapdoor Ciphers, MAA, 1997]. This solution requires that the two players cooperate to generate a win as quickly as possible for one of them. We show, using computational search techniques, that no shorter game is possible. We also consider a solitaire version of Chinese Checkers where one player attempts to move her pieces across the board in as few moves as possible. In 1971, Octave Levenspiel found a solution in 27 moves [Ibid.]; we demonstrate that no shorter solution exists. To show optimality, we employ a variant of A* search, as well as bidirectional search.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.