Papers
Topics
Authors
Recent
2000 character limit reached

Infinite words containing squares at every position

Published 7 Mar 2008 in math.CO and cs.FL | (0803.1189v2)

Abstract: Richomme asked the following question: what is the infimum of the real numbers $\alpha$ > 2 such that there exists an infinite word that avoids $\alpha$-powers but contains arbitrarily large squares beginning at every position? We resolve this question in the case of a binary alphabet by showing that the answer is $\alpha$ = 7/3.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.