Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Minimization of DFAs with Partial Transition Functions (0802.2826v1)

Published 20 Feb 2008 in cs.IT, cs.DS, and math.IT

Abstract: Let PT-DFA mean a deterministic finite automaton whose transition relation is a partial function. We present an algorithm for minimizing a PT-DFA in $O(m \lg n)$ time and $O(m+n+\alpha)$ memory, where $n$ is the number of states, $m$ is the number of defined transitions, and $\alpha$ is the size of the alphabet. Time consumption does not depend on $\alpha$, because the $\alpha$ term arises from an array that is accessed at random and never initialized. It is not needed, if transitions are in a suitable order in the input. The algorithm uses two instances of an array-based data structure for maintaining a refinable partition. Its operations are all amortized constant time. One instance represents the classical blocks and the other a partition of transitions. Our measurements demonstrate the speed advantage of our algorithm on PT-DFAs over an $O(\alpha n \lg n)$ time, $O(\alpha n)$ memory algorithm.

Citations (41)

Summary

We haven't generated a summary for this paper yet.