Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximability Distance in the Space of H-Colourability Problems (0802.0423v1)

Published 4 Feb 2008 in cs.CC

Abstract: A graph homomorphism is a vertex map which carries edges from a source graph to edges in a target graph. We study the approximability properties of the Weighted Maximum H-Colourable Subgraph problem (MAX H-COL). The instances of this problem are edge-weighted graphs G and the objective is to find a subgraph of G that has maximal total edge weight, under the condition that the subgraph has a homomorphism to H; note that for H=K_k this problem is equivalent to MAX k-CUT. To this end, we introduce a metric structure on the space of graphs which allows us to extend previously known approximability results to larger classes of graphs. Specifically, the approximation algorithms for MAX CUT by Goemans and Williamson and MAX k-CUT by Frieze and Jerrum can be used to yield non-trivial approximation results for MAX H-COL. For a variety of graphs, we show near-optimality results under the Unique Games Conjecture. We also use our method for comparing the performance of Frieze & Jerrum's algorithm with Hastad's approximation algorithm for general MAX 2-CSP. This comparison is, in most cases, favourable to Frieze & Jerrum.

Citations (6)

Summary

We haven't generated a summary for this paper yet.