Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Set-based complexity and biological information (0801.4024v1)

Published 25 Jan 2008 in cs.IT, cs.CC, math.IT, and q-bio.QM

Abstract: It is not obvious what fraction of all the potential information residing in the molecules and structures of living systems is significant or meaningful to the system. Sets of random sequences or identically repeated sequences, for example, would be expected to contribute little or no useful information to a cell. This issue of quantitation of information is important since the ebb and flow of biologically significant information is essential to our quantitative understanding of biological function and evolution. Motivated specifically by these problems of biological information, we propose here a class of measures to quantify the contextual nature of the information in sets of objects, based on Kolmogorov's intrinsic complexity. Such measures discount both random and redundant information and are inherent in that they do not require a defined state space to quantify the information. The maximization of this new measure, which can be formulated in terms of the universal information distance, appears to have several useful and interesting properties, some of which we illustrate with examples.

Citations (8)

Summary

We haven't generated a summary for this paper yet.