Papers
Topics
Authors
Recent
2000 character limit reached

Set-based complexity and biological information

Published 25 Jan 2008 in cs.IT, cs.CC, math.IT, and q-bio.QM | (0801.4024v1)

Abstract: It is not obvious what fraction of all the potential information residing in the molecules and structures of living systems is significant or meaningful to the system. Sets of random sequences or identically repeated sequences, for example, would be expected to contribute little or no useful information to a cell. This issue of quantitation of information is important since the ebb and flow of biologically significant information is essential to our quantitative understanding of biological function and evolution. Motivated specifically by these problems of biological information, we propose here a class of measures to quantify the contextual nature of the information in sets of objects, based on Kolmogorov's intrinsic complexity. Such measures discount both random and redundant information and are inherent in that they do not require a defined state space to quantify the information. The maximization of this new measure, which can be formulated in terms of the universal information distance, appears to have several useful and interesting properties, some of which we illustrate with examples.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.