Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity of the Discrete-Time AWGN Channel Under Output Quantization (0801.1185v2)

Published 8 Jan 2008 in cs.IT and math.IT

Abstract: We investigate the limits of communication over the discrete-time Additive White Gaussian Noise (AWGN) channel, when the channel output is quantized using a small number of bits. We first provide a proof of our recent conjecture on the optimality of a discrete input distribution in this scenario. Specifically, we show that for any given output quantizer choice with K quantization bins (i.e., a precision of log2 K bits), the input distribution, under an average power constraint, need not have any more than K + 1 mass points to achieve the channel capacity. The cutting-plane algorithm is employed to compute this capacity and to generate optimum input distributions. Numerical optimization over the choice of the quantizer is then performed (for 2-bit and 3-bit symmetric quantization), and the results we obtain show that the loss due to low-precision output quantization, which is small at low signal-to-noise ratio (SNR) as expected, can be quite acceptable even for moderate to high SNR values. For example, at SNRs up to 20 dB, 2-3 bit quantization achieves 80-90% of the capacity achievable using infinite-precision quantization.

Citations (40)

Summary

We haven't generated a summary for this paper yet.