Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Set theoretical Representations of Integers, I (0801.0353v1)

Published 2 Jan 2008 in math.LO and cs.CC

Abstract: We reconsider some classical natural semantics of integers (namely iterators of functions, cardinals of sets, index of equivalence relations), in the perspective of Kolmogorov complexity. To each such semantics one can attach a simple representation of integers that we suitably effectivize in order to develop an associated Kolmogorov theory. Such effectivizations are particular instances of a general notion of "self-enumerated system" that we introduce in this paper. Our main result asserts that, with such effectivizations, Kolmogorov theory allows to quantitatively distinguish the underlying semantics. We characterize the families obtained by such effectivizations and prove that the associated Kolmogorov complexities constitute a hierarchy which coincides with that of Kolmogorov complexities defined via jump oracles and/or infinite computations. This contrasts with the well-known fact that usual Kolmogorov complexity does not depend (up to a constant) on the chosen arithmetic representation of integers, let it be in any base unary, binary et so on. Also, in a conceptual point of view, our result can be seen as a mean to measure the degree of abstraction of these diverse semantics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.